
Space Telescope Imaging Spectrograph

IDL FITS Reader/Writer
D. Lindler

September 27, 1995

INTRODUCTION 1
READING FITS IMAGE FILES (THE BASICS) 2
RANDOM ACCESS OF AN INPUT FILE 3
BASIC USAGE OF THE FITS HEADER 4
EXTENSION/PRIMARY HEADER KEYWORDS 5
UPDATING FITS HEADERS 5
WRITING A FITS FILE. 7
APPENDING NEW EXTENSIONS TO AN EXISTING FITS FILE. 10
SCALED DATA IN FITS FILES 10
RANDOM GROUPS FORMAT FILES 11
IMPLICIT IMAGES 13
ERROR PROCESSING 14
READING ONLY A PORTION OF AN EXTENSION 14
WRITING UNSUPORTED FITS EXTENSIONS 16
Appendix A: FITS Control Block 18
Appendix B: FITS_OPEN 19
Appendix C: FITS_HELP 20
Appendix D: FITS_READ 21
Appendix E: FITS_WRITE 24
Appendix F: FITS_CLOSE 26

Prepared under contract NAS5-32833 between Advanced Computer Concepts, Inc. and
NASA/ Goddard Space Flight Center, Greenbelt, Maryland.

INTRODUCTION

The Flexible Image Transport System (FITS) format will be used for storing STIS science
data and calibration reference data. Multiple images can be stored in a single file using FITS
Image extensions. The basic layout of the fits file with extensions will be:

Header (for the primary data unit, PDU)
Primary data unit or image (this will normally be null for STIS data sets)
Header for extension 1
Image or data unit 1
Header for extension 2
Image or data unit 2

...
Header for extension N
Image or data unit N

The primary data unit (PDU) for STIS data will usually be a Null Image, identified by the
keyword value NAXIS = 0 in its header. The PDU header will contain other keyword
parameters and history records that are applicable to all of the extension images. Keywords
and history that are extension dependent will be stored in the extension headers. The multiple
extensions may contain multiple readouts with the same instrument configuration (e.g.
CR-SPLITS) and multiple data types for a single readout (i.e. a STIS image, an error image,
and a data quality image).

The following IDL routines have been written for reading and writing these FITS data sets.

FITS_OPEN - routine to open a FITS file
FITS_HELP - print summary of the file contents
FITS_READ - routine to read an extension
FITS_WRITE - routine to write an extension
FITS_CLOSE - routine to close a file

Routines available for manipulation of the FITS headers include:

SXPAR - extract keyword values
SXADDPAR - add or update keyword values
SXDELPAR - delete keywords
SXADDHIST - add history records
HPRINT - print the header

1

READING FITS IMAGE FILES (THE BASICS)

To read a FITS file it must first be opened using:

FITS_OPEN, filename, FCB

where filename is the name of the file and FCB (FITS Control Block) is an output IDL
structure variable containing information on the file. The user normally does not need to be
concerned with the contents of FCB. However, FCB must be passed to subsequent routines.
For more sophisticated users, the complete contents of the FCB is listed in Appendix A.

Once the file is opened, it can be read with FITS_READ:
FITS_READ, FCB, data, header

This will read the next extension in the file. On the first call it will read the PDU. If the PDU
is a null image, the first call will read the first extension. Subsequent calls will read the
following extensions in order. For users wishing to read all extensions in the file, the
NEXTEND item of the FITS Control Block (FCB.NEXTEND) contains the number of
extensions in the file.

Once you are finished with the file, it should be closed using FITS_CLOSE:

FITS_CLOSE, FCB

 Read the first two images in a FITS image file

 FITS_OPEN,'myfile.fits',FCB
 FITS_READ,FCB,image1,header1
 FITS_READ,FCB,image2,header2
 FITS_CLOSE,FCB

 Example: read and process all of the extensions in the file "myfile.fits"

 FITS_OPEN, 'myfile.fits', FCB
 n = fcb.nextend ;number of extensions
 for i = 0, n do begin ;i=0 reads PDU
 FITS_READ,FCB, image, header
 Process the image
 end
 FITS_CLOSE,FCB

2

In many cases, the FITS file will contain only a single image. When running interactively, it
is not convenient to call FITS_OPEN, FITS_READ, and then FITS_CLOSE to read the
image. An alternative approach is to supply a filename to FITS_READ instead of the FCB.

FITS_READ, filename, image, header

In this case, FITS_READ will open the file, read the PDU (or if the PDU is null, the first
extension), and close the file.

RANDOM ACCESS OF AN INPUT FILE

In many cases, you may not want to read the extensions in order, or you may want to skip
extensions. The easiest way to do this is with the EXTEN_NO keyword parameter to
FITS_READ. To read extension N of a file, type:

FITS_OPEN, filename, FCB
FITS_READ, FCB, image, header, exten_no = N
FITS_CLOSE, FCB

or equivalently

FITS_READ, filename, image,header, exten_no = N

To read the PDU, use EXTEN_NO = 0. If you are reading multiple extensions from the same
data file, it is more efficient to open the file with FITS_OPEN, read the extensions, and then
close the file with FITS_CLOSE. If you supply a filename to FITS_READ, the file will be
opened and closed each time the routine is called.

An alternate method to read extensions is to use standard header keyword values that identify
the extensions. These include:

XTENSION - extension type (e.g.. IMAGE, TABLE, etc.)
EXTNAME - extension name (name of the extension, e.g. SCI, DQ, or ERR)
EXTVER - sequential version number 1, 2, 3, etc.
EXTLEVEL - extension level number

The XTENSION keyword is required in all extension headers. The other three are optional.
In the current design of STIS data sets, EXTNAME and EXTVER will be used for identifying
extensions.

3

Searches for the correct EXTNAME and XTENSION are case insensitive. If you are running
interactively and you do not know what extensions are in the file use:

FITS_HELP, FCB
or

FITS_HELP, filename

If you are writing a procedure that needs to know what extensions are in the file, use the
information in the FITS control block (See Appendix A).

BASIC USAGE OF THE FITS HEADER

The output header from FITS_READ is a string array with 80 character records of the form:

<KEYWORD NAME> = VALUE

and COMMENT and HISTORY records. From IDL, you can print the header simply by
typing:

PRINT, header

or better by typing:

HPRINT, header

To extract data values from the header into IDL variables, use the function SXPAR:

VALUE = SXPAR(header, keyword)

where KEYWORD is in the name of the keyword parameter. If the specified keyword is not
in header then the system variable !ERR will be set to -1.

 READ_FITS examples
 Read a simple fits file, 'image.fits', containing an image.
 FITS_READ, 'image.fits', image, header

 Read first TABLE extension in fitstab.fits.
 FITS_OPEN, 'fitstab.fits', fcb
 READ_FITS, fcb, image, header, xtension = 'TABLE'

 Read first extension with EXTNAME = SCI and EXTVER = 5
 READ_FITS, fcb, image, header, extname = 'sci', extver = 5
 FITS_CLOSE, fcb

4

EXTENSION/PRIMARY HEADER KEYWORDS

STIS data files will have a null primary data unit and the images following in "IMAGE"
extensions. The primary data unit header will have keyword values and history which are
applicable to all of the images in the file. Each extension header will have keyword values
that change from one extension to another. When reading an image extension, FITS_READ
combines header keywords from the primary data unit and the extension into a single output
header. This avoids the need for internally maintaining and passing two separate headers to
IDL routines. The structure of the output header of FITS_READ is:

Required FITS keywords for the extension
(XTENSION, BITPIX, NAXIS, etc.)

BEGIN MAIN HEADER --
keywords from the primary data unit header

BEGIN EXTENSION HEADER ---
keywords from the extension header

END

In the event that duplicate keywords are in the primary and extension headers, SXPAR will
retrieve the last occurrence of the keyword value (the extension header keyword value) and
print a warning that duplicate keyword names were found. If the PDU value of the duplicate
keyword is needed, you can obtain it by reading the primary data unit with FITS_READ or by
accessing the value in FCB by:

value = sxpar(fcb.hmain, keyword)

In the event that you may have a lot of duplicate keywords, you can read the extension header
without the PDU header keywords included by adding the parameter, /NO_PDU, to the call to
FITS_READ:

FITS_READ, FCB, image, header, /NO_PDU

UPDATING FITS HEADERS

 Example using SXPAR to extract a header keyword value

 FITS_READ,'mfile.fits',data,header
 det = sxpar(header, 'DETECTOR')
 if !err lt 0 then print,'Keyword DETECTOR not found'

5

Two routines can be used to update the FITS header, SXADDPAR and SXADDHIST. To
update an existing keyword value or to add a new keyword value use:

SXADDPAR, header, keyword, value, comment

where KEYWORD is the name of the keyword (up to 8 characters) and VALUE is the value
to be assigned to the keyword. Comment is an optional comment to be added to the header.

To add a single history line, or a string array containing multiple history lines to the header
use:

SXADDHIST, history, header

where HISTORY is a string or string array containing the history.

The keyword parameter /PDU can be used to add a new keyword parameter or new history
record to the primary data unit portion of a header.

SXADDPAR, header, keyword, value, /PDU
SXADDHIST, history, header, /PDU

If a keyword already exists in the extension header, it can not be added to the main primary
data unit header. If you need to move a keyword from the extension header to the primary
data unit portion of the header, the keyword must first be deleted from the header.

SXDELPAR, header, keyword.

6

WRITING A FITS FILE.

To create a FITS file it must first be opened for writing using FITS_OPEN.

FITS_OPEN, filename, fcb, /WRITE

The keyword /WRITE indicates that a new file is to be created. To write an image with the
minimal required header, use:

FITS_WRITE, fcb, data
FITS_CLOSE, fcb

The above will write the image into the primary data unit. This format can be read by
virtually all FITS readers in other reduction systems. If DATA is not supplied or has a scalar
value, FITS_WRITE will write a null image (i.e. NAXIS=0). If you want to add additional
keywords to the output file's header, use:

FITS_WRITE, fcb, data, header

where HEADER contains the keywords to be added. FITS_WRITE will automatically insert
or update the necessary required keywords in HEADER.

To write the image as the first extension instead of the PDU use:

 Examples of updating a header stored in variable H.

 Update the value of ROT1.
 sxaddpar, h, 'ROT1', 55.5

 Add new keyword parameter with a comment to the extension portion of the
 header.
 sxaddpar, h, 'PROCDATE', 'August 20, 1995', 'I added this myself'

 Add some history to the PDU portion of the header.
 sxaddhist, 'Data Processed by procedure BIGPRO', h, /PDU

 Move a keyword from the extension portion of the header to the PDU portion.
 value = sxpar(h, 'MSM') ; get value
 sxdelpar, h, 'MSM' ; delete it from the extension portion
 sxaddpar, h, 'MSM', value, /PDU ; add it to the PDU portion

7

FITS_WRITE, fcb
FITS_WRITE, fcb, image

The first call will write a null primary data unit. The second call will write the image to an
"IMAGE" extension. The default extension type for FITS_WRITE is "IMAGE". To write
other types of extensions, you can either supply a header to FITS_WRITE containing the
keyword XTENSION or use the optional parameter XTENSION in the call to FITS_WRITE.

FITS_WRITE, fcb, image, /xtension = '<extension type>'

If the first call to FITS_WRITE after FITS_OPEN is for an extension, FITS_WRITE will
automatically write a null PDU before writing the extension. If a header is supplied,
FITS_WRITE will automatically separate the PDU header parameters and the extension
header parameters. Additional calls to FITS_WRITE can then be used to write additional
extensions. Any PDU header parameters supplied in a call to FITS_WRITE after the PDU
has been written by a previous call will be ignored.

When all extensions are written, FITS_CLOSE should be used to close the file.

FITS_CLOSE, fcb

8

When writing multiple images to an output data set, XTENSION, EXTNAME, EXTVER, and
EXTLEVEL can be used for identification. STIS currently plans to use EXTNAME and

 Examples of writing a single image, A, to a FITS file.

 1) A very basic file with A stored in the Primary Data Unit and no extensions.
 FITS_OPEN, 'newfile.fits', fcb, /write
 FITS_WRITE,fcb, a
 FITS_CLOSE, fcb

 2) A shorter method for example 1. FITS_WRITE opens and closes the file.
 FITS_WRITE, 'newfile.fits', a

 3) Write the image with some addition user supplied header information.
 h = ['END '] ;null header (8 char.)
 SXADDPAR, h, 'targetid', 'ZETA-OPH'
 SXADDHIST,'This was processed by routine process on '+!stime, h
 FITS_WRITE, 'newfile.fits', a, h

 4) Write A into an image extension instead of the primary data unit.
 FITS_OPEN, 'newfile.fits', fcb, /write
 FITS_WRITE, fcb ;null primary data unit
 FITS_WRITE, fcb, a ;image extension
 FITS_CLOSE, fcb

 5) A shorter way to do the same thing as number 4.
 FITS_WRITE, 'newfiles.fits', a, xtension = 'IMAGE'

 6) Write A to an image extension with a header that has separate PDU and
 EXTENSION keyword parameters. On the first call to FITS_WRITE, a scalar
 is supplied and a null image will be written with the PDU keywords extracted
from
 the header. On the second call, the data will be written with the extension
 keywords extracted from the header.
 FITS_OPEN, 'newfile.fits', fcb, /write
 FITS_WRITE, fcb, 0, header
 FITS_WRITE, fcb, a, header
 FITS_CLOSE, fcb

 7) Short way to do number 6.
 FITS_WRITE, 'newfile.fits', a, header, xtension = 'IMAGE'

9

EXTVER. The values written to an output file can come from two sources, the header
supplied to FITS_WRITE, or keyword parameters in the call to FITS_WRITE.

FITS_WRITE, fcb, data, header, xtension = value, extname = value, extver = value, $
extlevel = value

If XTENSION, EXTNAME, EXTVER, or EXTLEVEL, are present in both the header
supplied to FITS_WRITE and as a keyword parameter in the calling sequence of
FITS_WRITE, the calling sequence parameter will take precedence. If EXTNAME,
EXTVER, or EXTLEVEL are not supplied by either method, the keywords will not be placed
into the output header. If XTENSION is not supplied, it will have a value of "IMAGE" in the
output file.

APPENDING NEW EXTENSIONS TO AN EXISTING FITS FILE.

 Examples for identifying FITS extensions in an output FITS file.

 1) Extension identification supplied in the call to FITS_WRITE. XTENSION keyword
is
 not supplied and will have the default value of "IMAGE"

 FITS_OPEN, 'outfile.fits', fcb, /write
 FITS_WRITE, fcb, FLUX1, extname = 'FLUX', extver = 1
 FITS_WRITE, fcb, ERR1, extname = 'ERR', extver = 1
 FITS_WRITE, fcb, DQ1, extname = 'DQ' , extver = 1
 FITS_WRITE, fcb, FLUX2, extname = 'FLUX', extver = 2
 FITS_WRITE, fcb, ERR2, extname = 'ERR', extver = 2
 FITS_WRITE, fcb, DQ2, extname = 'DQ' , extver = 2
 FITS_CLOSE, fcb

 2) Process an input file and keep same extension identification

 FITS_OPEN, 'infile.fits', fcbin
 FITS_OPEN,'outfile.fits', fcbout, /write

 for i = 1, fcbin.nextend do begin
 FITS_READ, fcbin, data, header

 <process the data and header>

 FITS_WRITE, fcbout, data, header
 endfor

 FITS_CLOSE, fcbin

10

Additional extensions can be added to an existing FITS file by opening the file with the
APPEND keyword parameter.

FITS_OPEN, filename, fcb, /APPEND

Once a file is opened for APPEND, FITS_WRITE can be used to add additional extensions.
The primary data unit and existing extensions remain unchanged.

SCALED DATA IN FITS FILES

In the old days, floating point data were stored in FITS data files as scaled integers with the
formula:

Data_Value = BZERO + BSCALE * File_Value

where BZERO, and BSCALE are header parameters, File_Value is the integer data value
stored in the FITS file, and Data_Value is the unscaled data value. FITS_READ
automatically scales the data to the floating point values when BZERO and BSCALE are
present in the header. If you want the data left as unscaled integers, use the NOSCALE
parameter to FITS_READ.

FITS_READ, fcb, data, header, /noscale

DATA will be returned in the original scaled form and HEADER will contain the values of
BSCALE and BZERO. The data can be unscaled any time in IDL with.

Data = sxpar(header, 'BZERO) + sxpar(header, 'BSCALE') * data

FITS_WRITE does not perform scaling of the data before writing. Floating point data is
written into the output file in the standard FITS IEEE format. If you wish to write the data as
scaled integers, you must scale it before calling FITS_WRITE and add the scaling parameters
to the header. The reverse process is:

File_Value = (Data_Value - BZERO) / BSCALE

 Example: Adding an extension to an existing FITS file.

 FITS_OPEN, 'myfile.fits', fcb, /append
 FITS_WRITE, fcb, data, header
 FITS_CLOSE,fcb

11

RANDOM GROUPS FORMAT FILES

FITS_READ can be used to read random group formatted FITS data files which have the
following header keywords:

GROUPS = T
GCOUNT = number of groups
PCOUNT = number of parameters preceding each group

Random group data consists of a set of groups with the number of groups specified by
GCOUNT. Each group consists of a number of parameters specified by PCOUNT followed
by the data array with size specified by NAXIS, NAXIS1, etc. To read the Nth group of a
FITS file use:

FITS_READ, fcb, data, header, group_par, group = N

where keyword GROUP specifies the group number to read (starting at 0 for the first group)
and GROUP_PAR is a output vector containing the PCOUNT group parameters. If GROUP
is not specified for a GROUP formatted file, the first group is returned. Three additional
keywords can be used to describe each group parameters.

PTYPEn - character string giving the name of the Nth group parameter.
PSCALn - scale factor for the Nth parameter.
PZEROn - zero point for the Nth parameter.

FITS_READ does not apply the scale factors to the parameters. If needed, you can apply
them by the formula:

VALUE = PZEROn + PSCALn * group_parameter_value

where group_parameter_value is the value recorded in the file and VALUE is the unscaled
data value. It is important to note that the n in PTYPEn, PSCALn, and PZEROn starts at 1
and refers to the n-1 element of the IDL GROUP_PAR vector which starts with subscript 0.

 Example: Writing an image as scaled integers

 image = ROUND((image - 1000.0) / 25.0) ; 32 bit integers
 image = FIX(image) ; 16 bit integers
 SXADDPAR, header, 'BZERO', 1000.0
 SXADDPAR, header, 'SCALE', 25.0
 FITS_WRITE, 'scaled.fits', image, header

12

When reading multiple groups from the same file, It is inefficient to reread the header with
each group. keyword /DATA_ONLY can be used in the call to FITS_READ to avoid
rereading the header.

FITS_READ, fcb, data, header, gpar, /DATA_ONLY

Likewise if you want to only read the header:

FITS_READ, fcb, data, header, /HEADER_ONLY

In this call DATA is only a place holder in the calling sequence and is not read.

 Reading group 5 of a Random Groups formatted FITS file and printing
 the header parameters.

 FITS_OPEN, 'groupfile.fits', fcb
 FITS_READ, fcb, data, header, gpar, group = 5
 FITS_CLOSE, fcb
 pcount = sxpar(header, 'PCOUNT')

 for i=1,pcount - 1 do begin
 string_i = strtrim(i,2)
 pscale = sxpar(header, 'PSCAL'+string_i)
 if !err lt 0 then pscale = 1.0
 pzero = sxpar(header, 'PZERO'+string_i)
 if !err lt 0 then pzero = 0.0
 print, pzero + pscale * gpar(i-1)
 end

 Looping on groups in a random groups formatted FITS file:

 FITS_OPEN, 'groupfile.fits', fcb
 FITS_READ, fcb, image, h, /HEADER_ONLY, exten_no = 0
 n = sxpar(header,'GCOUNT')
 for i = 0, n-1 do begin
 FITS_READ, fcb, image, h, gpar, /DATA_ONLY, exten_no = 0
 <process the image>
 end

13

It is also important when reading multiple groups is to explicitly specify the extension number
to FITS_READ. Otherwise, FITS_READ will try to read the second group from the next
extension.

FITS_WRITE does not support the writing of group formatted files. The use of random
groups formatted files is not recommended. Better approaches to writing the data is to use
FITS binary tables or FITS IMAGE extensions. Group parameters can then be put into
columns of the binary table or as header parameters of the image extensions. If you must use
random groups formatted output files, refer to the section, WRITING UNSUPPORTED FITS
EXTENSIONS, for a very painful way of doing it.

IMPLICIT IMAGES

In some cases STIS will use "Implicit Images" in a FITS file. For example, if all of the data
quality values for a raw image are 0 (i.e. no telemetry errors), it is a waste of disk space to
store a 2048 x 2048 image of zeros. In this case an implicit image will be used as identified
by header parameter NAXIS=0 and three keyword parameters specifying an image with a
constant value.

NPIX1 - number of samples in the image
NPIX2 - number of lines in the image
PIXVALUE - value of each pixel in the image

When this type of FITS header is encountered, FITS_READ will create an image with the
size specified by NPIX1 and NPIX2 and a constant value specified by PIXVALUE. The fact
that the image was not in the file is transparent to the user.

To write an implicit image, the user must populate the keywords NPIX1, NPIX2, and
PIXVALUE in a new or existing header and call FITS_WRITE with a scalar supplied for the
data.

14

ERROR PROCESSING

When FITS_OPEN, FITS_READ, FITS_WRITE, or FITS_CLOSE encounters an
irrecoverable error when processing a file, they print an error message and issue a RETALL.
If you would prefer to handle the errors yourself (which should be the case if using these
routines inside of a widget), a NO_ABORT keyword can be supplied to any of the routines.
If NO_ABORT is specified, the FITS routines return control to the calling program along with
the error message in a keyword parameter MESSAGE.

FITS_<xxxx>, ..., /NO_ABORT, MESSAGE = MESSAGE

where <xxxx> is OPEN, READ, WRITE, or CLOSE.

 Example: writing an implicit image to a FITS file. A raw image is written with an
 extension name 'SCI' followed by an implicit data quality image containing all zeros.

 FITS_OPEN, 'newfile.fits', fcb,/write
 FITS_WRITE, fcb, data, header, extname = 'SCI', extver=1
 SXADDPAR, header, 'NPIX1', 1024
 SXADDPAR, header, 'NPIX2', 1024
 SXADDPAR, header, 'PIXVALUE', 0
 FITS_WRITE, fcb, 0, header, extname = 'DQ', extver = 1
 FITS_CLOSE, fcb

 Sample code to interactively ask user for a FITS file name and read the
 image. If an error occurs the user is given another chance.

 filename = ''
 start: read, 'Name of the FITS file?', filename
 FITS_READ,filename,data,header, /no_abort, message = text
 ;
 ; check for error reading the file
 ;
 if !err lt 0 then begin
 print, text
 goto,start
 endif

15

READING ONLY A PORTION OF AN EXTENSION

In some cases you may want to read only a portion of a FITS image or an extension. Two
header parameters to FITS_READ, FIRST and LAST, allow you to specify which words of
the extension to read. When FIRST and LAST are specified, FITS_READ returns the
specified range of data as a one-dimensional vector (with the correct data type as specified by
BITPIX). For partial reads, FITS_READ applies no scale factors (BSCALE and BZERO).
Some applications of FIRST and LAST may be to:

Read a selected range of lines in an image.
Read a single image from a data cube
Read a selected range of rows in a FITS binary table
Read the heap area of a FITS extension.
Read data from a non-standard extension.

Since FITS_READ returns the data as a vector, the IDL REFORM function may be needed to
properly format multi-dimension results. The NAXIS, AXIS, and PCOUNT fields of the
FCB structure (Appendix A) are useful for this task.

You must explicitly tell FITS_READ which extension to read when calling FITS_READ
multiple times to read portions of the same extension. Otherwise, after each call to
FITS_READ, it will attempt to read the next extension. Also when calling FITS_READ
multiple times for a single extension, it is inefficient to read the extension header each time.
The /DATA_ONLY keyword parameter can be set to skip reading the header. If you need the
header, you can either read it on the first data read for the extension or you can call
FITS_READ with the /HEADER_ONLY keyword to read the header separately.

16

 Read and process each image in a data cube (one at a time). The first call to
 FITS_READ is used to read the header only.

 FITS_OPEN, 'cube.fits', fcb
 FITS_READ,fcb, data, header, exten_no=0, /header_only
 ns = fcb.axis(0,0)
 nl = fcb.axis(1,0)
 nimages = fcb.axis(2,0)
 ;
 ; loop on images
 ;
 for i = 0,nimages-1 do begin
 ;
 ; read the data for the ith cube, don't read the header
 ;
 first = ns * nl * i
 last = first + ns*nl - 1
 FITS_READ, fcb, data, exten_no=0, /data_only, first=first, last=last
 ;
 ; Reformat the data as a 2-D image
 ;
 data = REFORM(data, ns, nl, /OVERWRITE)

 <process the data>

 endfor ; loop on images in the cube.

17

WRITING UNSUPPORTED FITS EXTENSIONS

FITS_WRITE will only write a PDU or EXTENSION when PCOUNT is set to zero and the
data in the whole extension is in an IDL variable. However, FITS_WRITE will allow the user
to manually write an unsupported extension. To accomplish this the user must first create an
extension header (which must be valid and must reflect the actual amount of data to be
written). The header is written using WRITE_FITS and the /NO_DATA keyword parameter.

WRITE_FITS, fcb, 0, header, /NO_DATA

The data must be converted to external IEEE format and then written using WRITEU to the
logical unit specified in FCB.UNIT.

HOST_TO_IEEE, data
WRITEU, fcb.unit, data

Multiple calls to WRITEU can be used for a single extension, provided the data are written in
the correct order. When WRITE_FITS is called to begin a new extension, it will
automatically pad the previous extension to complete a 2880 byte record.

This method of using WRITE_FITS can also be used to write a random group formatted FITS
file. It is recommended that the use of this type of file is avoided.

 Example: Reading the heap area of a binary table

 FITS_OPEN, 'btable.fits', fcb
 ;
 ; read the table
 ;
 FITS_READ, fcb, table, header, exten_no = 2
 ;
 ; read the heap area
 ;
 i1= fcb.axis(0,2) * fcb.axis(1,2)
 i2 = i1 + fcb.pcount(2) - 1
 FITS_READ, fcb, heap, exten_no = 2, first = i1, last = i2, /data_only
 FITS_CLOSE, fcb

18

 Write a binary table to a FITS file. The table and heap area is in a byte array and
 HOST_TO_IEEE is not needed to convert it to external format. The header must be
 created by the user.

 FITS_OPEN, 'btable.fits', fcb, /write
 FITS_WRITE, fcb ;write null PDU
 FITS_WRITE, fcb, 0, header, /no_data ;write user created header
 WRITEU, fcb.unit, table ;write the table
 WRITEU, fcb, unit, heap ; write the heap area

 Example: writing a random groups formatted FITS file with the group parameters
 stored in the 2-D array GPAR where the second subscript gives the group number
 and the DATA arrays are stored in a 3-D array where the third subscript is the
group
 number.

 FITS_OPEN, 'outfile.fits', fcb, /write
 size_data = size(data)
 size_gpar = size(gpar)
 h = ['END ']
 sxaddpar, h, 'SIMPLE', 'T'
 sxaddpar, h, 'BITPIX', 32 ;longword data
 sxaddpar, h, 'NAXIS', 2 ;2-D images
 sxaddpar, h, 'NAXIS1', size_data(1)
 sxaddpar, h, 'NAXIS2', size_data(2)
 sxaddpar, h, 'GROUPS', 'T', 'Random group data file'
 sxaddpar, h, 'PCOUNT', size_gpar(1), 'Number of group parameters'
 sxaddpar, h, 'GCOUNT', size_data(3), 'Number of groups'
 <optionally add PTYPEn, PSCALn, PZEROn for each paramter
 and any other desired keyword parameters or history>
 ;
 ; convert data to external format
 ;
 HOST_TO_IEEE, data
 HOST_TO_IEEE, gpar
 ;
 ; loop on groups
 ;
 for i=0,size_data(3)-1 do begin
 writeu,fcb.unit,gpar(*,i)
 writeu,fcb,unit,data(*,*,i)
 end

19

Appendix A
FITS CONTROL BLOCK

The FITS control block, FCB, returned by FITS_OPEN and used by FITS_READ,
FITS_WRITE, FITS_HELP, and FITS_CLOSE, is an IDL structure. When FITS_OPEN is
called without the /WRITE or /APPEND parameters, FCB contains:

 FCB.FILENAME - name of the input file
.UNIT - unit number the file is opened to
.NEXTEND - number of extensions in the file.
.XTENSION - string array giving the extension type for each extension.
.EXTNAME - string array giving the extension name for each extension.

(null string if not defined the extension)
.EXTVER - vector of extension version numbers (0 if not defined)
.EXTLEVEL - vector of extension levels (0 if not defined)
.GCOUNT - vector with the number of groups in each extension.
.PCOUNT - vector with parameter count for each group
.BITPIX - bits per pixel for each extension with values

 8 byte data
 16 short word integers
 32 long word integers
-32 IEEE floating point
-64 IEEE double precision floating point

.NAXIS - number of axes for each extension. (0 for null data units)

.AXIS - 2-D array where axis(*,N) gives the size of each axes for extension N

.START_HEADER - vector giving the starting byte in the file where each
extension header begins

.START_DATA - vector giving the starting byte in the file where the data for
each

extension begins
.HMAIN - keyword parameters (less standard required FITS keywords) for the

primary data unit.
.OPEN_FOR_WRITE - flag (0= open for read, 1=open for write,

 2=open for update)
.LAST_EXTENSION - last extension number read.
.RANDOM_GROUPS - 1 if the PDU is random groups format, 0 otherwise

When FITS open is called with the /WRITE or /APPEND option, FCB contains:

 FCB.FILENAME - name of the input file
.UNIT - unit number the file is opened to
.NEXTEND - number of extensions in the file.
.OPEN_FOR_WRITE - flag (1=open for write, 2=open for update)

20

Appendix B
FITS_OPEN

Opens a FITS (Flexible Image Transport System) data file.

CALLING SEQUENCE:
FITS_OPEN, filename, fcb

INPUTS:

FILENAME : name of the FITS file to open

OUTPUTS:

FCB : (FITS Control Block) a IDL structure containing information
concerning the file. It is an input to FITS_READ, FITS_WRITE
and FITS_CLOSE

KEYWORD PARAMETERS:

/WRITE: Set this keyword to open a new file for writing.
/APPEND: Set to append to an existing file.
/NO_ABORT: Set to return to calling program instead of a RETALL

when an I/O error is encountered. If set, the routine will
return with !err=-1 and a message in the keyword MESSAGE.
If not set, FITS_OPEN will print the message and issue a RETALL

MESSAGE = value: Output error message
/HPRINT - print headers with routine HPRINT as they are read.

(useful for debugging a strange file)

NOTES:

The output FCB should be passed to the other FITS routines (FITS_OPEN,
FITS_READ, FITS_HELP, and FITS_WRITE). It has the structure
given in Appendix A.

EXAMPLES:

Open a FITS file for reading:
FITS_OPEN,'myfile.fits',fcb

Open a new FITS file for output:
FITS_OPEN,'newfile.fits',fcb,/write

21

Appendix C
FITS_HELP

To print a summary of the primary data units and extensions in a FITS file.

CALLING SEQUENCE:
FITS_HELP,filename_or_fcb

INPUTS:
FILENAME_OR_FCB - name of the fits file or the FITS Control Block (FCB)

returned by FITS_OPEN.

OUTPUTS:
a summary of the fits file is printed.

EXAMPLES:

FITS_HELP,'myfile.fits'

FITS_OPEN,'anotherfile.fits',fcb
FITS_HELP,fcb

22

Appendix D
FITS_READ

Reads a FITS file.

CALLING SEQUENCE:
FITS_READ, filename_or_fcb, data [,header, group_par]

INPUTS:
FILENAME_OR_FCB - this parameter can be the FITS Control Block (FCB)

returned by FITS_OPEN or the file name of the FITS file. If
a file name is supplied, FITS_READ will open the file with
FITS_OPEN and close the file with FITS_CLOSE before exiting.
When multiple extensions are to be read from the file, it is
more efficient for the user to call FITS_OPEN and leave the
file open until all extensions are read.

OUTPUTS:
DATA - data array. If /NOSCALE is specified, BSCALE and BZERO

(if present in the header) will not be used to scale the data.
If keywords FIRST and LAST are used to read a portion of the
data or the heap portion of an extension, no scaling is done
and data is returned as a 1-D vector. The user can use the IDL
function REFORM to convert the data to the correct dimensions
if desired. If /DATA_ONLY is specified, no scaling is done.

HEADER - FITS Header. If an extension is read, and the /NO_PDU keyword
parameter is not supplied, the primary data unit header
and the extension header will be combined. The header will have
the form:

<required keywords for the extension: XTENSION, BITPIX,
NAXIS, ...>
BEGIN MAIN HEADER --------------------------------
<PDU header keyword and history less required keywords:

SIMPLE, BITPIX, NAXIS, ...>
BEGIN EXTENSION HEADER ---------------------------
<extension header less required keywords that were

placed at the beginning of the header.
END

The structure of the header is such that if a keyword is
duplicated in both the PDU and extension headers, routine
SXPAR will print a warning and return the extension value of
the keyword. SXADDPAR and SXADDHIST will add new keywords and
history to the extension portion of the header unless the

23

parameter /PDU is supplied in the calling sequence.
GROUP_PAR - Group parameter block for FITS random groups format files

Any scale factors in the header (PSCALn and PZEROn) are not
applied to the group parameters.

KEYWORD PARAMETERS:
/NOSCALE: Set to return the FITS data without applying the scale

factors BZERO and BSCALE.
/HEADER_ONLY: set to read the header only.
/DATA_ONLY: set to read the data only. If set, if any scale factors

are present (BSCALE or BZERO), they will not be applied.
/NO_PDU: Set to not add the primary data unit header keywords to the

output header.
/NO_ABORT: Set to return to calling program instead of a RETALL

 when an I/O error is encountered. If set, the routine will return with
 !err=-1 and a message in the keyword MESSAGE. If not set, FITS_READ

will print the message and issue a RETALL
MESSAGE = value: Output error message
EXTEN_NO - extension number to read. If not set, the next extension

in the file is read. Set to 0 to read the primary data unit.
XTENSION - string name of the xtension to read
EXTNAME - string name of the extname to read
EXTVER - integer version number to read
EXTLEVEL - integer extension level to read
FIRST - set this keyword to only read a portion of the data. It gives

the first word of the data to read
LAST - set this keyword to only read a portion of the data. It gives the last

word number of the data to read
GROUP - group number to read for GCOUNT>1. (Default=0, the first group)
NaNvalue - On non-IEEE floating point machines, it gives the value

to place into words with IEEE NaN.
ENUM - Output extension number that was read.

NOTES:
Determination or which extension to read.

case 1: EXTEN_NO specified. EXTEN_NO will give the number of the
extension to read. The primary data unit is referred
to as extension 0. If EXTEN_NO is specified, XTENSION,
EXTNAME, EXTVER, and EXTLEVEL parameters are ignored.

case 2: if EXTEN_NO is not specified, the first extension
with the specified XTENSION, EXTNAME, EXTVER, and
EXTLEVEL will be read. If any of the 4 parameters
are not specified, they will not be used in the search.
Setting EXTLEVEL=0, EXTVER=0, EXTNAME='', or
XTENSION='' is the same as not supplying them.

24

case 3: if none of the keyword parameters, EXTEN_NO, XTENSION,
EXTNAME, EXTVER, or EXTLEVEL are supplied. FITS_READ
will read the next extension in the file. If the
primary data unit (PDU), extension 0, is null, the
first call to FITS_READ will read the first extension
of the file.

The only way to read a null PDU is to use EXTEN_NO = 0.

If FIRST and LAST are specified, the data are returned without applying
any scale factors (BSCALE and BZERO) and the data is returned in a
1-D vector. This will allow you to read any portion of a multiple
dimension data set. Once returned, the IDL function REFORM can be
used to place the correct dimensions on the data.

IMPLICIT IMAGES: FITS_READ will construct an implicit image
for cases where NAXIS=0 and the NPIX1, NPIX2, and PIXVALUE
keywords are present. The output image will be:

image = replicate(PIXVALUE,NPIX1,NPIX2)

EXAMPLES:
Read the primary data unit of a FITS file, if it is null read the
first extension:

FITS_READ, 'myfile.fits', data, header

Read the first two extensions of a FITS file and the extension with
EXTNAME = 'FLUX' and EXTVER = 4
FITS_OPEN, 'myfile.fits', fcb
FITS_READ, fcb,data1, header2, exten_no = 1
FITS_READ, fcb,data1, header2, exten_no = 2
FITS_READ, fcb,data3, header3, extname='flux', extver=4
FITS_CLOSE, fcb

Read the sixth image in a data cube for the fourth extension.
FITS_OPEN, 'myfile.fits', fcb
image_number = 6
ns = fcb.axis(0,4)
nl = fcb.axis(1,4)
i1 = (ns*nl)*(image_number-1)
i2 = i2 + ns*nl-1
FITS_READ,fcb,image,header,first=i1,last=i2
image = reform(image,ns,nl,/overwrite)
FITS_CLOSE

25

Appendix E
FITS_WRITE

Writes a fits primary data unit or extension.

CALLING SEQUENCE:
FITS_WRITE, filename_or_fcb, data, [header_in]

INPUTS:
FILENAME_OR_FCB: name of the output data file or the FITS control

block returned by FITS_OPEN (called with the /WRITE or
/APPEND) parameters.

OPTIONAL INPUTS:
DATA: data array to write. If not supplied or set to a scalar, a

null image is written.
HEADER_IN: FITS header keyword. If not supplied, a minimal basic

header will be created. Required FITS keywords, SIMPLE,
BITPIX, XTENSION, NAXIS, ... are added by FITS_WRITE and
do not need to be supplied with the header. If supplied,
their values will be updated as necessary to reflect DATA.

KEYWORD PARAMETERS:
XTENSION: type of extension to write (Default="IMAGE"). If not

supplied, it will be taken from HEADER_IN. If not in either
place, the default is "IMAGE". This parameter is ignored
when writing the primary data unit.

EXTNAME: EXTNAME for the extension. If not supplied, it will be taken
from HEADER_IN. If not supplied and not in HEADER_IN, no
EXTNAME will be written into the output extension.

EXTVER: EXTVER for the extension. If not supplied, it will be taken
 from HEADER_IN. If not supplied and not in HEADER_IN, no
 EXTVER will be written into the output extension.

EXTLEVEL: EXTLEVEL for the extension. If not supplied, it will be taken
 from HEADER_IN. If not supplied and not in HEADER_IN, no

EXTLEVEL will be written into the output extension.
NaNvalue: data value in DATA to be replaced with IEEE NaN in the output

file.
 /NO_ABORT: Set to return to calling program instead of a RETALL

when an I/O error is encountered. If set, the routine will
return with !err=-1 and a message in the keyword MESSAGE.
If not set, FITS_READ will print the message and issue a RETALL

MESSAGE: value of the error message for use with /NO_ABORT
HEADER: actual output header written to the FITS file.

26

/NO_DATA: Set if you only want FITS_WRITE to write a header. The
header supplied will be written without modification and
the user is expected to write the data using WRITEU to unit
FCB.UNIT. When FITS_WRITE is called with /NO_DATA, the user is
responsible for the validity of the header, and must write
the correct amount and format of the data. When FITS_WRITE
is used in this fashion, it will pad the data from a previously
written extension to 2880 blocks before writing the header.

NOTES:
If the first call to FITS_WRITE is an extension, FITS_WRITE will
automatically write a null image as the primary data unit.

Keywords and history in the input header will be properly separated
into the primary data unit and extension portions when constructing
the output header (See FITS_READ for information on the internal
Header format which separates the extension and PDU header portions).

EXAMPLES:
Write an IDL variable to a FITS file with the minimal required header.

FITS_WRITE,'newfile.fits',ARRAY

Write the same array as an image extension, with a null Primary data unit.
FITS_WRITE,'newfile.fits',ARRAY,xtension='IMAGE'

Write 4 image extensions to the same file.
FITS_OPEN,'newfile.fits',fcb
FITS_WRITE,fcb,data1,extname='FLUX',extver=1
FITS_WRITE,fcb,err1,extname'ERR',extver=1
FITS_WRITE,fcb,data2,extname='FLUX',extver=2
FITS_WRITE,fcb,err2,extname='ERR',extver=2
FITS_CLOSE,FCB

27

Appendix F
FITS_CLOSE

Closes a FITS data file

CALLING SEQUENCE:
FITS_CLOSE,fcb

INPUTS:
FCB: fits control block returned by FITS_OPEN.

KEYWORD PARAMETERS:
/NO_ABORT: Set to return to calling program instead of a RETALL

when an I/O error is encountered. If set, the routine will
return with !err=-1 and a message in the keyword MESSAGE.
If not set, FITS_CLOSE will print the message and issue a RETALL

MESSAGE = value: Output error message

EXAMPLE:
Open a FITS file, read some data, and close it with FITS_CLOSE

FITS_OPEN,'infile',fcb
FITS_READ,fcb,data
FITS_READ,fcb,moredata
FITS_CLOSE,fcb

28

